

LA-UR-21-24831

Approved for public release; distribution is unlimited.

Title: A Turbulent Mix-Model for Re-stabilized Flows

Author(s): Braun, Noah Oakley Gore, Robert Allen

Intended for: LANL Webex presentation

2021-05-19 (rev.1) Issued:

A Turbulent Mix-Model for **Re-stabilized Flows**

Noah Braun Rob Gore

19 May 2021

Turbulent Mixing

- Hydrodynamic instabilities are a common driver of material mixing
 - Acceleration Driven (Rayleigh-Taylor)

Shear-Driven (Kelvin-Helmholtz)

Shock-Driven (Richtmyer-Meshkov)

 u_{low}

source: Baltzer and Livescu (2020)

- Directly computing hydrodynamics at the resolutions required to accurately capture turbulence mixing is typically impractical
 - Engineering Approach: Reynolds-Averaged Navier-Stokes (RANS)
 - Solve for ensemble-averaged solutions

- Reynold-Averaged Navier-Stokes
 - Navier-Stokes Momentum: $\frac{\partial \rho u_i}{\partial t} \left(\rho u_j u_i P \delta_{ij} \tau_{ij}\right)_{,j} = 0$
 - Apply averaging and assume small viscosity:
 - $\bullet \quad (\bar{\rho}\tilde{u}_i)_{,t} \left(\bar{\rho}\tilde{u}_j\tilde{u}_i \bar{P}\delta_{ij} \bar{\rho}\tilde{R}_{ij}\right)_{,j} = 0$
 - \bar{f} : ensemble average of f, $\tilde{f} = \overline{\rho f}/\bar{\rho}$
 - f' and f'' are fluctuations about the mean $f = \tilde{f} + f'' = \bar{f} + f'$
 - Reynolds Stress: $\tilde{R}_{ij} = \overline{\rho u_i^{\prime\prime} u_j^{\prime\prime}}/\bar{\rho}$
 - Measure of velocity fluctuations in the flow
 - Turbulent kinetic energy: $K = \tilde{R}_{ii}/2$
 - Unknown; must be modeled

$$- \frac{\partial (\bar{\rho}\tilde{R}_{ij})}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{R}_{ij})_{,j} = \cdots$$

- BHR is an empirical model
 - $\frac{\partial (\bar{\rho}\tilde{R}_{ij})}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{R}_{ij})_{,j} = -\frac{\partial}{\partial x_k}(\bar{\rho}u_i''u_j''u_k'') + \dots$
 - Unknown terms, e.g. $\overline{\rho u_i'' u_i'' u_k''}$

DNS of a turbulent shear layer

source: Baltzer and Livescu (2020)

- BHR is an empirical model
 - $\frac{\partial(\bar{\rho}\bar{R}_{ij})}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{R}_{ij})_{,j} = -\frac{\partial}{\partial x_k}(\bar{\rho}u_i''u_j''u_k'') + \dots$
 - Unknown terms, e.g. $\overline{\rho u_i'' u_i'' u_k''}$
 - Make an ansatz (gradient diffusion hypothesis) that turbulent velocity fluctuations tend to transport quantities along scalar gradients,
 - $\overline{\rho u_i^{\prime\prime} u_j^{\prime\prime} u_k^{\prime\prime}} \approx -C_{\mu} \bar{\rho} v_t \frac{\partial \tilde{R}_{ij}}{\partial x_{\nu}}$
 - v_t : turbulent viscosity (turbulent length scale \times turbulent velocity scale)
 - Then tune coefficient C_{μ} such that BHR matches relevant DNS and experiments
 - Assumes C_{μ} a universal constant not reliable in transitional flows

DNS of a turbulent shear layer

source: Baltzer and Livescu (2020)

- BHR is an empirical model
 - $\frac{\partial(\bar{\rho}\bar{R}_{ij})}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{R}_{ij})_{,j} = -\frac{\partial}{\partial x_k}(\bar{\rho}u_i''u_j''u_k'') + \dots$
 - Unknown terms, e.g. $\overline{\rho u_i'' u_i'' u_k''}$
 - Make an ansatz (gradient diffusion hypothesis) that turbulent velocity fluctuations tend to transport quantities along scalar gradients,
 - $\overline{\rho u_i^{\prime\prime} u_j^{\prime\prime} u_k^{\prime\prime}} \approx -C_{\mu} \bar{\rho} v_t \frac{\partial \tilde{R}_{ij}}{\partial x_k}$
 - v_t : turbulent viscosity (turbulent length scale \times turbulent velocity scale)
 - Then tune coefficient \mathcal{C}_{μ} such that BHR matches relevant DNS and experiments
 - Assumes C_{μ} a universal constant not reliable in transitional flows

Transport term across a uniform density shear layer

DNS of a turbulent shear layer

source: Baltzer and Livescu (2020)

Variables Evolved in BHR

BHR3.1

- Tracks closure models for a number of turbulent variables
 - \tilde{R}_{ij} : Reynolds stress amplitude of velocity fluctuations in the flow

•
$$a_i$$
: turbulent mass flux – mass transport due to velocity fluctuations

- Mass transport by turbulence
- S_T ; S_D : Transport and dissipation lengthscales in the turbulence
- b: density-specific volume covariance
 - Measure of density fluctuations

$$\tilde{R}_{ij} = \frac{\overline{\rho u_i^{\prime\prime} u_j^{\prime\prime}}}{\overline{\rho}} \; ; \; \left(\frac{cm^2}{s^2}\right)$$

$$a_i = \frac{\overline{\rho' u_i'}}{\overline{\rho}}$$
; $\left(\frac{cm}{s}\right)$

$$S_D = \frac{K^{\frac{3}{2}}}{\varepsilon} \; ; \quad (cm)$$

$$b = -\overline{\rho'\nu'} \; ; \quad (-)$$

BHR4

- Adds species-specific quantities:
 - a_i^k : turbulent flux of material mass for material k

•
$$b^k$$
: correlation between density and mass fraction fluctuations for material k $b^k = -\frac{\overline{\rho'c^{k'}}}{\overline{\rho}}$; (-)

$$a_i^k = -\frac{\overline{\rho u_i^{\prime\prime} c^{k^{\prime\prime}}}}{\overline{\rho}}; \quad \left(\frac{cm}{s}\right)$$

$$b^k = -\frac{\rho' c^{k'}}{\overline{\rho}}; \quad (-)$$

Turbulent Mass Flux, a_i

- The turbulent mass flux is a measure of material advection by turbulence
- In incompressible Rayleigh-Taylor flows there is negligible average velocity, $ar{u} pprox 0$
 - Volume falling dense fluid equals volume of rising light fluid
 - The continuity equation becomes,

 - The turbulent mass flux a_i is effectively the advection velocity of mass in the frame where there is no background bulk advection velocity.
 - Advection velocity of $\bar{\rho}$: $\tilde{u}_i = \bar{u} + a_i$ Generally: $\frac{\partial \bar{\rho}}{\partial t} + (\bar{\rho}\tilde{u}_j)_j = 0$ Advection velocity of $\bar{\rho}$: $\tilde{u}_i = \bar{u}$ Volume averaged velocity Additional material movement due to mix

Source: Dalziel et al. (1999)

b as a mix-metric

- $b = -\overline{\rho'\nu'}$ is often employed as a measure of molecular mix
 - b is a measure of density variations; $b \approx \frac{\overline{\rho' \rho'}}{\overline{\rho}^2}$ in flows with $\frac{|\rho'|}{\overline{\rho}} \ll 1$
 - The more molecularly mixed a flow is, the lower the density fluctuations are
 - Lower b tends to correspond to a more molecularly mixed state

High b: Materials are intermingled but not mixed

Low b: Materials are well mixed

b as a mix-metric

- $b = -\overline{\rho'\nu'}$ is often employed as a measure of molecular mix
 - b is a measure of density variations; $b \approx \frac{\overline{\rho' \rho'}}{\overline{\rho}^2}$ in flows with $\frac{|\rho'|}{\overline{\rho}} \ll 1$
 - The more molecularly mixed a flow is, the lower the density fluctuations are and the lower b is
- b is a hydrodynamic quantity and there are some limitations to using b to infer material mixing

 $A_t = 0.5$ Rayleigh-Taylor mixing layer

Los Alamos

Profile of b across the mixing layer

 b is maximum near the center of the mixing layer, biased towards

PDF of density at different heights

- Peaks closer to $\rho=2$ correspond to a more mixed state
- · Centerline is most mixed
- Light fluid side mixes more than heavy fluid side

Measuring mix from \boldsymbol{b} can require additional modeling

- $\theta_{
 m
 ho v} = 1 {b \over b_{nomix}}$ (dashed line)
- Ristorcelli's PDF methods

[1] Kurien et al. 2019 'Local Wavenumber Turbulence Model Implementation in xRAGE: L3 Milestone Report' [2] Livescu et al. 2009 'High-Reynolds number Rayleigh-Taylor turbulence'

Variables Evolved in BHR

BHR3.1

- Tracks closure models for a number of turbulent variables
 - \tilde{R}_{ij} : Reynolds stress amplitude of velocity fluctuations in the flow
 - a_i : turbulent mass flux mass transport due to velocity fluctuations
 - S_T ; S_D : Transport and dissipation lengthscales in the turbulence
 - b : density-specific volume covariance

$$\tilde{R}_{ij} = \frac{\overline{\rho u_i^{\prime\prime} u_j^{\prime\prime}}}{\overline{\rho}} ; \left(\frac{cm^2}{s^2}\right)$$

$$a_i = \frac{\overline{\rho' u_i'}}{\overline{\rho}}$$
; $\left(\frac{cm}{s}\right)$

$$S_D = \frac{K^{\frac{3}{2}}}{\varepsilon} \; ; \quad (cm)$$

$$b = -\overline{\rho'\nu'}$$
; $(-)$

BHR4

- Adds species-specific quantities:
 - a_i^k : turbulent flux of material mass for material κ
 - a_i . Turbulent hux of material mass for material κ

these (
$$S_0$$
; $K_0 = \frac{\widetilde{R}_{nn}}{2}$)

$$a_i^* = -\frac{\int_{i'}^{i'} c^{k''}}{\overline{\rho}}; \quad \left(\frac{cm'}{s}\right)$$

• b^k : correlation between density and mass fraction fluctuations for material k $b^k = -\frac{\overline{\rho'c^{k'}}}{\overline{\rho}}$; (-)

Initial Conditions

- Need initial lengthscale (S_0) and initial turbulent kinetic energy (K_0)
 - Often S_0 and K_0 are tuned to match experiments
- Goncharov (modal model 1)
 - Potential flow model for parabolic bubbles on the interface
 - A Lagrangian tracer particle is placed on the material interface, and a laminar model for the interface evolution is tracked at the tracer
 - Once the Reynolds number of the interface growth is large enough, turns on BHR and sets S and K within a small zone about the interface
 - The normal S_0/K_0 prescription is used for the background values, so should set these to be fairly small
 - Some limitations
 - Non-linear coupling between modes is neglected. May be best to approximate multimode perturbations by single mode
 - Limited to small amplitude to wavelength ratios
- Z-model (modal model 2) vortex-sheet model
 - Allows large amplitudes and multimode interactions
 - Stability can be an issue
- Tracer-BHR Approximate solution to BHR used with modal model
 - Delays turning on BHR until the interface has grown large enough to resolve on the grid.

Changes in BHR4 - Modeling material transport

- BHR3.1
 - Transport of averaged material mass-fraction \tilde{c}^k modeled by gradient-diffusion:

$$\frac{\partial (\bar{\rho}\tilde{c}^k)}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{c}^k)_{,j} = -(\bar{\rho}u_j''c^{k''})_j \approx C_\mu(\bar{\rho}S_T\sqrt{K}\tilde{c}_{,j}^k)_{,j}$$
Advection of material Mixing of material

Material mixing does not always behave like diffusion

 $A_t = 0.5$ Rayleigh Taylor instability with gravity reversal

Source: Livescu (2011)

BHR4 - Multispecies Material Transport

- Track new closure equations for species transport and fluctuations
 - Transport of averaged material mass-fraction \tilde{c}^k :
 - $\bullet \quad \frac{\partial(\bar{\rho}\tilde{c}^k)}{\partial t} + (\bar{\rho}\tilde{u}_j\tilde{c}^k)_{ij} = (\bar{\rho}a_j^k)_{ij}$
 - $a_i^k = -\frac{\overline{\rho u_i'' c^{k''}}}{\overline{\rho}}$: turbulent flux of species mass fraction, for species k
 - $b^k = \overline{c^{k''}}$: turbulent fluctuation in species mass fraction, for species k
 - For constant species densities, ρ^k , the species terms are directly related to the turbulent mass flux, a, and turbulent density fluctuations, b
 - $a = \bar{\rho} \sum_{k} \frac{a^{k}}{a^{k}}$; $b = \bar{\rho} \sum_{k} \frac{b^{k}}{a^{k}}$
 - Given the exact unclosed equations for a^k and b^k (Cihonski et al. 2015), and assuming that BHR4.0 should be consistent with the a and b equations of BHR3.1 in incompressible flows, directly yields equations for a^k and b^k
 - xRage is a compressible code (ρ^k are not constant) so we still track a and b

Reversed Gravity Rayleigh-Taylor

- Dense fluid above light fluid
 - Initially gravity is downward, driving mixing
 - After some time, gravity reverses direction and stabilizes the mixing layer
- Initial conditions
 - All test cases shown here are initialized from the Goncharov model (modal model 1)
 - Potential flow model for laminar bubble evolution
 - At $Re_h = 20$, the Goncharov model initializes BHR with a TKE based on the bubble velocities and $S_T = S_D$ set equal to the bubble amplitude

 $A_t = 0.5$ Rayleigh Taylor instability with gravity reversal

Source: Livescu (2011)

Statistical Profiles Post-Gravity Reversal (BHR4.0)

Shell Breakup Due to Gravity

- Dense fluid layer suspended in light fluid
 - Low half of the shell is unstable and begins mixing
 - Eventually the lower mixing layer impinges on the upper interface, driving mixing at the stable interface
 - Compared to DNS of Youngs (2017)

$$-\frac{\rho_{heavy}}{\rho_{light}} = 3$$

Source: Youngs (2017)

Shell Breakup Due to Gravity

- Dense fluid layer suspended in light fluid
 - Compared to DNS of Youngs (2017)
 - Lower half of the shell is unstable and begins mixing, eventually impinging on the upper stable interface
 - The stability of the upper interface resists mixing and remains relatively sharp even after the unstable mixing layer reaches it.
 - At $\tau = 4$ (first column of images), BHR4 captures the sharp upper interface relatively well, whereas BHR3.1 generates too much mixing at the interface.
 - At $\tau = 10$ (second column of images), BHR4 retains the general structure of the DNS, whereas BHR3.1 has fully mixed to a uniform state.

DNS (Youngs 2017)

Spherical Implosion

- Implosion of a dense spherical shell
 - Mix of RM (shock-driven) and RT (acceleration-driven) instabilities
 - Implosion driven by prescribed, time-varying source region
 - 1d spherical problem in RANS, compared to 3D LES (El Rafei et al. 2019)
 - Variations on this problem previously used as hydrodynamics validation test for xRage (Joggerst et al. 2014).

Spherical Implosion

- Implosion of a dense spherical shell
 - Mix of RM (shock-driven) and RT (acceleration-driven) instabilities
 - Implosion driven by prescribed, time-varying source region
 - 1d spherical problem in RANS, compared to 3D LES (El Rafei et al. 2019)
 - Variations on this problem previously used as hydrodynamics validation test for xRage (Joggerst et al. 2014).

Spherical Implosion

- 1D RANS of implosion of a spherical shell
 - Comparing statistics of mixing layer at interior surface of shell to LES of (El Rafei et al. 2019)
 - Reasonable agreement with turbulent kinetic energy and mixing layer growth rates
 - The mixing layer shrinking at $t \approx 1.75 2.0ns$ results from a mixture of de-mixing, shock compression, and smooth compression

Summary

- BHR-4
 - Improvements seen over BHR3.1 in problems with stabilized mixing layers
 - BHR-4.0 also captures the behavior of certain variables such as $\bar{u}_i = \tilde{u}_i a_i$ that BHR-3.1 doesn't reliably capture
 - Good agreement with DNS/LES in a range of classical problems
 - Minimal added model complexity relative to BHR3.1
- Possible Issues
 - Realizability
 - Hard to enforce a_i^k and $b^k \to 0$ as $\tilde{c}^k \to 0$
 - Cost
 - Depends on the problem, but usually not significantly different

Local Wavenumber Model (LWN)

- Tracks two-point correlations
 - BHR Reynolds stress, representing turbulent kinetic energy

$$\tilde{R}_{ij}(x) = \frac{\overline{\rho(x)u_i''(x)u_j''(x)}}{\overline{\rho}(x)}$$

- LWN Reynolds stress, represent velocity correlations at some separation scale

$$\tilde{R}_{ij}(x,r) = \frac{\overline{\rho(x)u_i''(x)u_j''(x+r)}}{\overline{\rho}(x)} u_i''(x)$$

- In practice, evolves spectral quantities at every grid cell $\tilde{R}_{ij}(x,k)$, $a_i(x,k)$, b(x,k)
 - Inherently includes lengthscale information, no need for explicitly evolved lengthscales
 - Simpler initial conditions and transition to turbulence
 - Increased model complexity.

■
$$LWN(x, k, t) = \underbrace{physical_space_evolution(x, k, t)}_{\text{pressure gradients, etc., ...}} + \underbrace{spectral_evolution(x, k, t)}_{\text{pressure gradients, etc., ...}} + \underbrace{spectral_evolution(x, k, t)}_{\text{pressure gradients, etc., ...}}$$
Evolution of scales, $k^{-\frac{5}{3}}$ cascade, ...

Multispecies Material Transport (BHR4.0)

Still track slightly modified BHR3.1 a and b equations

• Still track slightly modified BHR3.1
$$a$$
 and b equations
$$= \frac{\partial (\bar{\rho}a_i)}{\partial t} + (\bar{\rho}\tilde{u}_k a_i)_{,k} = b \; \bar{P}_{,j} - \tilde{R}_{ik}\bar{\rho}_{,k} - \rho a_k \bar{u}_{i,k} + \bar{\rho} \frac{c_\mu}{\sigma_a} \big(S_T \sqrt{K} a_{i,k} \big)_{,k} - C_{ap} b \bar{P}_{,i} + C_{au}\bar{\rho} a_k \bar{u}_{i,k} - \bar{\rho} \frac{\sqrt{K}}{S_D} C_{a1} a_i \\ - \frac{\partial (\bar{\rho}b)}{\partial t} + (\bar{\rho}b\tilde{u}_k)_{,k} = -2(b+1)a_k\bar{\rho}_{,k} + 2\bar{\rho}a_n b_{,n} + \bar{\rho}^2 \frac{c_\mu}{\sigma_b} \big(\frac{1}{\bar{\rho}} \; S_T \sqrt{K} b_{,n} \big)_{,n} - C_{b1}\bar{\rho} \frac{\sqrt{K}}{S_D} (1+b)b$$

$$a_i = \sum_k \frac{a_i^k}{\rho^k} \text{ if } \nabla \cdot \bar{u} = 0$$

• Multispecies
$$a^k$$
 and b^k equations
$$-\frac{\partial \overline{\rho} a_i^k}{\partial t} + (\overline{\rho} \widetilde{u}_j a_i^k)_{,j} = (C_{au} - 1) \overline{\rho} a_j^k \overline{u}_{i,j} + \overline{\rho} \widetilde{R}_{ij} \widetilde{c}_{,j}^k - b^k (1 - C_{ap}) \overline{P}_{,i} + C_{\mu} (S_T \sqrt{K} (\overline{\rho} a_i^k)_{,j})_{,j} + a_j (\overline{\rho} a_i^k)_{,j} - C_{a1} \overline{\rho} \frac{\sqrt{K}}{S_D} a_i^k$$

$$C_{a1}\rho_{\overline{S_D}}a_i^{\kappa}$$

$$-\frac{\partial \overline{\rho}b^k}{\partial t} + (\overline{\rho}\tilde{u}_jb^k)_{,j} = \overline{\rho}a_j(c^k + 2b^k)_{,j} + \overline{\rho}b^ka_{j,j} - a_j^k\overline{\rho}_{,j} - \overline{\rho}C_{\mu}\left(\frac{1}{\overline{\rho}}S_T\sqrt{K}(\overline{\rho}b^k)_{,j}\right)_{,j} - C_{b1}\overline{\rho}\frac{\sqrt{K}}{S_D}(1+b)b^k$$

